Emulsifiers for Metalworking Fluids

Our emulsifiers, particularly our glycerol-based emulsifiers, exhibit good dermatological properties and they do not have restrictive labelling.

Base Emulsifiers

TAGAT® V 20
Exceptional emulsifying properties combined with excellent lubrication properties for the formation of metalworking fluids based on vegetable and synthetic ester oils. In combination with alcohol ethoxylates suitable for mineral oil-based fluids. Additionally, it reduces the amount of antifoam and corrosion inhibitor required in formulations. Glycerol-based; HLB = 8.4

TAGAT® V 15
Exceptional emulsifying properties for synthetic ester oils combined with excellent lubrication properties. Glycerol-based; HLB = 7.0

TAGAT® TO V
Excellent emulsifier for the formulation of metalworking fluids based on naphthenic oils, synthetic oils (e.g. isooctylate) and ester oil/mineral oil blends; additionally, it improves lubrication properties of metalworking fluid emulsions. Glycerol-based; HLB = 11.3

TEGO® STO 85 V
Excellent enhancer for paraffin oils, especially in combination with TEGO® STO 70 (suitable in mineral oil). Sorbitan-based; HLB = 11.3

Co-Emulsifiers

TEGIN® O V
Excellent co-emulsifier in combination with TAGAT® V 20 and TAGAT® TO V. Glycerol-based; HLB = 3.3

TEGO® SM V
Excellent co-emulsifier, especially in combination with TAGAT® V 20. Sorbitan-based; HLB = 4.3

TEGO® STO V
Excellent co-emulsifier, especially in combination with TEGO® STO 85 V. Sorbitan-based; HLB = 1.8

This information and any recommendations, technical or otherwise, are presented in good faith and believed to be correct as of the date prepared. Recipients of this information and recommendations must make their own determination as to its suitability for their purposes. In no event shall Evonik assume liability for damages or losses of any kind or nature that result from the use of or reliance upon this information and recommendations. EVONIK EXPRESSLY DISCLAIMS ANY REPRESENTATIONS AND WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, AS TO THE ACCURACY, COMPLETENESS, NON-INFRINGEMENT, MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE (EVEN IF EVONIK IS AWARE OF SUCH PURPOSE) WITH RESPECT TO ANY INFORMATION AND RECOMMENDATIONS PROVIDED. Reference to any trade names used by other companies is neither a recommendation nor an endorsement of the corresponding product, and does not imply that similar products could not be used. Evonik reserves the right to make any changes to this information and recommendations at any time, without prior or subsequent notice.
In water miscible metalworking fluid formulations, emulsifiers are one of the most essential components. As an integral part of metalworking fluid concentrates, emulsifiers enable stable self-emulsification of the concentrate when diluted in water. Our emulsifiers meet the following requirements:

- Good solubility in base oils
- Good lubricating properties
- Good dermatological and toxicological properties
- Low foaming tendency
- Good heat stability

Our product range includes emulsifiers and co-emulsifiers that are based on renewable resources (e.g., ethoxylated or non-ethoxylated glycerol fatty acid esters, and sorbitan esters*), various fatty acid polyglycol esters and lauryl polyglycol ethers. However, the focus of Evonik is on environmentally friendly glycerol fatty acid esters. In order to emulsify a specific base oil, emulsifiers with suitable HLB values are needed. The required HLB values need to be adjusted according to the varying fatty acid distribution in vegetable oils or carbon distribution in mineral oils. To match the requirements of specific base oil qualities, emulsifiers exhibiting different hydrophilicities and hydrophobicities can be blended (base with co-emulsifier).

The central selection of the components for an emulsion and the evaluation of the latter’s stability are important tasks. In many cases the instability of an emulsion becomes obvious in the form of restructuring, the appearance of an oil phase at the surface of the system or by the sedimentation of components having a higher density. Thus it is logical to use centrifugation methods in order to speed up the potential destabilisation process and to gain a deeper understanding of the factors that determine emulsion stability.

Emulsion stability analysis LUMiFuge

In our labs we use the stability analyzer LUMiFuge to detect a large variety of demixing phenomena of disperse systems. It is a suitable tool for both screening purposes and optimisation of emulsion formulations. Emulsion stability analyzer LUMiFuge

TAGAT® V 20 improves the lubricating properties of metalworking fluids

Emulsion stability analyzer LUMiFuge

Stability of emulsions using TAGAT® V 20

TAGAT® V 20 exhibits exceptional emulsifying properties when used in water oil-based metalworking fluids. Particle size analysis by LUMiFuge technique demonstrates that TAGAT® V 20 yields emulsions of much lower particle size compared to competitive vegetable-based emulsifiers.

The tapping torque test is a relatively good simulation of practical conditions in metalworking operations and is widely used by the metalworking fluid industry to evaluate cutting fluid performance and EP/AW* additive response.

Tapping Torque Efficiency 1018 Steel

<table>
<thead>
<tr>
<th>Relative efficiency (%)</th>
<th>Sulfonate Polyglycol Emulsifier</th>
<th>TAGAT® V 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>110</td>
<td>105</td>
</tr>
<tr>
<td>105</td>
<td>100</td>
<td>95</td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Not available in North America

The tapping torque test equipment

TAGAT® V 20 lubricating properties were evaluated with a Megatap II G 8 (tapping torque test equipment). Torque values are measured as a top cut thread into a stainless steel in a machine spindle. Test results may be illustrated either as a simple torque force value or as relative efficiency (ratio of the average torque value of a reference fluid to that of the test fluid).

The tapping torque test is a relatively good simulation of practical conditions in metalworking operations and is widely used by the metalworking fluid industry to evaluate cutting fluid performance and EP/AW* additive response.
Emulsifiers from Renewable Resources

Caring about nature

In water miscible metalworking fluid formulations, emulsifiers constitute one of the most essential components. As an integral part of metalworking fluid concentrates, emulsifiers enable stable self-emulsification of the concentrate when diluted in water.

Our emulsifiers meet the following requirements:

- Good solubility in base oils
- Good lubricating properties
- Good dermatological and toxicological properties
- Low foaming tendency
- Good heat stability

Our product range includes emulsifiers and co-emulsifiers that are based on renewable resources (e.g. ethoxylated or non-ethoxylated glycerol fatty acid esters, and sorbitan esters*), various fatty acid polyglycol esters and lauryl polyglycol ethers. However, the focus of Evonik is on environmentally friendly glycerol fatty acid esters. In order to emulsify a specific base oil, emulsifiers with suitable HLB values are needed. The required HLB value needs to be adjusted according to the varying fatty acid distribution in vegetable oils or carbon distribution in mineral oils. To match the requirements of a specific base oil, emulsifiers exhibiting different hydrophilicities and hydrophobicities can be blended (base with co-emulsifier).

TAGAT® V 20 exhibits exceptional emulsifying properties when used in water-based metalworking fluids. Particle size analysis by LUMiFuge technique demonstrates that TAGAT® V 20 yields emulsions of much lower particle size compared to competitive vegetable-based emulsifiers.

In our labs we use the stability analyser LUMiFuge to detect a large variety of demixing phenomena of disperse systems. It is a suitable tool for both screening purposes and optimization of emulsion formulations.

TAGAT® V 20 improves the lubricating properties of metalworking fluids. TAGAT® V 20 lubricating properties were evaluated with a Megatap II-G 8 (tapping torque test equipment). Torque values are measured as a tap cuts threads into a predrilled hole in a metal specimen. Test results may be illustrated either as a simple torque force value or as relative efficiency (ratio of the average torque value of a reference fluid to that of the test fluid).

Stability of emulsions using TAGAT® V 20

TAGAT® V 20 improves the lubricating properties of metalworking fluids used in water-based metalworking fluids. The tapping torque test is a relatively good simulation of practical conditions in metalworking operations and is widely used by the metalworking fluid industry to evaluate cutting fluid performance and EP/AW* additive response.

Emulsion stability analyser LUMiFuge

Formulation of emulsions – assessment of emulsion stability

The careful selection of the components for an emulsion and the evaluation of the latter’s stability are important tasks. In many cases the instability of an emulsion becomes obvious in the form of creaming, the appearance of an oil phase at the surface of the system or by the sedimentation of components having a higher density. Thus it is logical to use centrifugation methods in order to speed up the potential destabilization process and to gain a deeper understanding of the factors that determine emulsion stability.

Emulsion stability analyser LUMiFuge

In our labs we use the stability analyser LUMiFuge to detect a large variety of demixing phenomena of disperse systems. It is a suitable tool for both screening purposes and optimization of emulsion formulations.

Stability of emulsions using TAGAT® V 20

Emulsion stability analyser LUMiFuge

Formulation of emulsions – assessment of emulsion stability

The careful selection of the components for an emulsion and the evaluation of the latter’s stability are important tasks. In many cases the instability of an emulsion becomes obvious in the form of creaming, the appearance of an oil phase at the surface of the system or by the sedimentation of components having a higher density. Thus it is logical to use centrifugation methods in order to speed up the potential destabilization process and to gain a deeper understanding of the factors that determine emulsion stability.

Emulsion stability analyser LUMiFuge

In our labs we use the stability analyser LUMiFuge to detect a large variety of demixing phenomena of disperse systems. It is a suitable tool for both screening purposes and optimization of emulsion formulations.

Stability of emulsions using TAGAT® V 20

TAGAT® V 20 exhibits exceptional emulsifying properties when used in water-based metalworking fluids. Particle size analysis by LUMiFuge technique demonstrates that TAGAT® V 20 yields emulsions of much lower particle size compared to competitive vegetable-based emulsifiers.

Lub bench top analysis verifies that the information determined by the LUMiFuge testing instrument is accurate. After storage over one month at room temperature, the TAGAT® V 20-based emulsion demonstrated superior emulsion stability compared to emulsions based on competitive emulsifiers.

TAGAT® V 20 improves the lubricating properties of metalworking fluids. TAGAT® V 20 lubricating properties were evaluated with a Megatap II-G 8 (tapping torque test equipment). Torque values are measured as a tap cuts threads into a predrilled hole in a metal specimen. Test results may be illustrated either as a simple torque force value or as relative efficiency (ratio of the average torque value of a reference fluid to that of the test fluid).

Stability of emulsions using TAGAT® V 20

TAGAT® V 20 improves the lubricating properties of metalworking fluids. TAGAT® V 20 lubricating properties were evaluated with a Megatap II-G 8 (tapping torque test equipment). Torque values are measured as a tap cuts threads into a predrilled hole in a metal specimen. Test results may be illustrated either as a simple torque force value or as relative efficiency (ratio of the average torque value of a reference fluid to that of the test fluid).

Stability of emulsions using TAGAT® V 20

TAGAT® V 20 improves the lubricating properties of metalworking fluids. TAGAT® V 20 lubricating properties were evaluated with a Megatap II-G 8 (tapping torque test equipment). Torque values are measured as a tap cuts threads into a predrilled hole in a metal specimen. Test results may be illustrated either as a simple torque force value or as relative efficiency (ratio of the average torque value of a reference fluid to that of the test fluid).

Stability of emulsions using TAGAT® V 20

TAGAT® V 20 improves the lubricating properties of metalworking fluids. TAGAT® V 20 lubricating properties were evaluated with a Megatap II-G 8 (tapping torque test equipment). Torque values are measured as a tap cuts threads into a predrilled hole in a metal specimen. Test results may be illustrated either as a simple torque force value or as relative efficiency (ratio of the average torque value of a reference fluid to that of the test fluid).
Emulsifiers from Renewable Resources

In water miscible metalworking fluid formulations, emulsifiers constitute one of the most essential components. As an integral part of metalworking fluid concentrates, emulsifiers enable stable self-emulsification of the concentrate when diluted in water.

Our emulsifiers meet the following requirements:
- Good solubility in base oils
- Good lubricating properties
- Good dermatological and toxicological properties
- Low foaming tendency
- Good heat stability

Our product range includes emulsifiers and co-emulsifiers that are based on renewable resources (e.g. ethoxylated or non-ethoxylated glycerol fatty acid esters, and sorbitan esters, various fatty acid polyglycol esters and lauryl polyglycol ethers. However, the focus of Evonik is on environmentally friendly glycerol fatty acid esters. In order to emulsify a specific base oil, emulsifiers with suitable HLB values are needed. The required HLB values need to be adapted according to the varying fatty acid distribution in vegetable oils or carbon distribution in mineral oils. To match the requirements of a specific oil quality, emulsifiers exhibiting different hydrophilicities and hydrophobicities can be blended (base with co-emulsifier).

Stability of emulsions using TAGAT® V 20

TAGAT® V 20 exhibits exceptional emulsifying properties when used in water-based metalworking fluids. Particle size analysis by LUMiFuge technique demonstrates that TAGAT® V 20 yields emulsions of much lower particle size compared to competitive vegetable-based emulsifiers.

Emulsion stability analyzer LUMiFuge

In our labs we use the stability analyzer LUMiFuge to detect a large variety of demixing phenomena of disperse systems. It is a suitable tool for both screening purposes and optimization of emulsion formulations.

Stability of emulsions using TAGAT® V 20

TAGAT® V 20 improves the lubricating properties of metalworking fluids.

TAGAT® V 20 lubricating properties were evaluated with a Megatap II-G 8 (tapping torque test equipment). Torque values are measured as a tap cuts threads into a predrilled hole in a metal specimen. Test results may be illustrated either as a simple torque force value or in relative efficiency (ratio of the average torque value of a reference fluid to that of the test fluid).

Tapping Torque Efficiency

<table>
<thead>
<tr>
<th>Relative efficiency (%)</th>
<th>Sulfonate Polyglycol Emulsifier</th>
<th>TAGAT® V 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td></td>
<td>TAGAT® V 20</td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Emulsion stability analyzer LUMiFuge

Caring about nature

Not available in North America.
Emulsifiers for Metalworking Fluids

Our emulsifiers, particularly our glycerol-based emulsifiers, exhibit good dermatological properties and they do not have restrictive labelling.

Base Emulsifiers

TAGAT® V 20
Exceptional emulsifying properties combined with excellent lubrication properties for the formulation of metalworking fluids based on vegetable and synthetic ester oils. In combination with alcohol ethoxylates suitable for mineral oil based fluids. Additionally, it reduces the amount of antifoam and corrosion inhibitor required in formulations.

Glycerol-based; HLB = 9.4

TAGAT® V 15
Exceptional emulsifying properties for synthetic ester oils combined with excellent lubrication properties.

Glycerol-based; HLB = 7

TAGAT® TO V
Excellent emulsifier for the formulation of metalworking fluids based on naphthenic oils, synthetic oils (e.g. isooctyleate) and ester oil/mineral oil blends; additionally, it improves lubrication properties of metalworking fluid emulsions.

Glycerol-based; HLB = 11.3

Co-Emulsifiers

TEGIN® O V
Excellent co-emulsifier in combination with TAGAT® V 20 and TAGAT® TO V.

Glycerol-based; HLB = 3.3

TEGO® SMO V
Excellent co-emulsifier, especially in combination with TAGAT® V 20.

Sorbitan-based; HLB = 4.3

TEGO® STO V
Excellent co-emulsifier, especially in combination with TEGO® SMO V.

Sorbitan-based; HLB = 1.8

TEGO® STO 85 V
Excellent co-emulsifier for paraffin oils, especially in combination with TEGO® SMO V (suitable in mineral oil).

Sorbitan-based; HLB = 11.3

This information and any recommendations, technical or otherwise, are presented in good faith and believed to be correct as of the date prepared. Recipients of this information and recommendations must make their own determination as to its suitability for the intended purpose. No warrant is given that such data or information are complete or without error or omissions. Evonik does not assume liability for any loss or damage that may result from the use of or reliance upon this information and recommendations. Evonik expressly disclaims any representations and warranties of any kind, whether express or implied, as to the accuracy, completeness, non-infringement, merchantability and/or fitness for a particular purpose (even if Evonik is aware of such purpose) with respect to any information and recommendations provided. Reference to any trade names used by other companies is neither a recommendation nor an endorsement of the corresponding product, and does not imply that similar products could not be used. Evonik reserves the right to make any changes to the information and recommendations at any time, without prior or subsequent notice.
Emulsifiers for Metalworking Fluids

Our emulsifiers, particularly our glycerol-based emulsifiers, exhibit good dermatological properties and they do not have restrictive labelling.

Base Emulsifiers

TAGAT® V 20
Exceptional emulsifying properties combined with excellent lubrication properties for the formulation of metalworking fluids based on vegetable and synthetic ester oils. In combination with acrylic esters it is suitable for mineral oil based fluids. Additionally, it reduces the amount of defoamer and corrosion inhibitor required in formulations.

Glycerol-based; HLB = 8.4

TAGAT® V 15
Exceptional emulsifying properties for synthetic ester oils combined with excellent lubrication properties.

Glycerol-based; HLB = 7

TAGAT® TO V
Excellent emulsifier for the formulation of metalworking fluids based on naphthenic oils, synthetic oils (e.g. isooctylleate) and ester oil/mineral oil blends. Additionally, it improves lubrication properties of metalworking fluid emulsions.

Glycerol-based; HLB = 11.3

TEGO® STO 85 V
Excellent co-emulsifier for paraffin oils, especially in combination with TEGO® STO V (suitable in mineral oil).

Sorbitan-based; HLB = 11.3

TEGO® STO V
Excellent co-emulsifier for paraffin oils, especially in combination with TEGO® STO 85 V (soluble in mineral oil).

Sorbitan-based; HLB = 1.8

TEGIN® O V
Excellent co-emulsifier in combination with TAGAT® V 20 and TAGAT® TO V.

Glycerol-based; HLB = 3.3

TEGO® SMO V
Excellent co-emulsifier, especially in combination with TAGAT® V 20.

Sorbitan-based; HLB = 4.3

TEGO® STO V
Excellent co-emulsifier, especially in combination with TEGO® STO 85 V.

Sorbitan-based; HLB = 1.8

This information and any recommendations, technical or otherwise, are presented in good faith and believed to be correct as of the date prepared. Recipients of this information and recommendations must make their own determination as to its suitability to their needs. The information and recommendations do not imply any representations or warranties that such third party will not infringe any patent or other intellectual property right. Any use of Evonik products in a manner not described in the Evonik product specifications is entirely at the risk of the user. Evonik expressly disclaims any representations and warranties of any kind, whether express or implied, as to the accuracy, completeness, non-infringement, merchantability and/or fitness for a particular purpose (even if Evonik is aware of such purpose) with respect to any information and recommendations provided. Evonik does not recommend any use of its products that is not described in the Evonik product specifications. This information and any recommendations are not a substitute for the Evonik product specifications. Reference to any trade names used by other companies is neither a recommendation nor an endorsement of the corresponding product, and does not imply that similar products could not be used. Evonik reserves the right to make any changes in the information and recommendations at any time, without prior or subsequent notice.